منابع مشابه
Directed evolution of TurboID for efficient proximity labeling in living cells and organisms
Protein interaction networks and protein compartmentation underlie every signaling process and regulatory mechanism in cells. Recently, proximity labeling (PL) has emerged as a new approach to study the spatial and interaction characteristics of proteins in living cells. However, the two enzymes commonly used for PL come with tradeoffs – BioID is slow, requiring tagging times of 18-24 hours, wh...
متن کاملAn improved smaller biotin ligase for BioID proximity labeling
The BioID method uses a promiscuous biotin ligase to detect protein-protein associations as well as proximate proteins in living cells. Here we report improvements to the BioID method centered on BioID2, a substantially smaller promiscuous biotin ligase. BioID2 enables more-selective targeting of fusion proteins, requires less biotin supplementation, and exhibits enhanced labeling of proximate ...
متن کاملBiotinylation by antibody recognition - A novel method for proximity labeling
Identification of protein-protein interactions is a major goal of biological research. Despite technical advances over the last two decades, important but still largely unsolved challenges include the high-throughput detection of interactions directly from primary tissue and the identification of interactors of insoluble proteins that form higher-order structures. We have developed a novel, pro...
متن کاملProximity-dependent labeling methods for proteomic profiling in living cells.
Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that ge...
متن کاملMultidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling
G-protein-coupled receptors (GPCRs) play critical roles in regulating physiological processes ranging from neurotransmission to cardiovascular function. Current methods for tracking GPCR signaling suffer from low throughput, modification or overexpression of effector proteins, and low temporal resolution. Here, we show that peroxidase-catalyzed proximity labeling can be combined with isobaric t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Methods
سال: 2018
ISSN: 1548-7091,1548-7105
DOI: 10.1038/s41592-018-0158-0